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Abstract Seasonal streamflow predictions provide a critical management tool for water managers in the
American Southwest. In recent decades, persistent prediction errors for spring and summer runoff
volumes have been observed in a number of watersheds in the American Southwest. While mostly driven by
decadal precipitation trends, these errors also relate to the influence of increasing temperature on
streamflow in these basins. Here we show that incorporating seasonal temperature forecasts from
operational global climate prediction models into streamflow forecasting models adds prediction skill for
watersheds in the headwaters of the Colorado and Rio Grande River basins. Current dynamical seasonal
temperature forecasts now show sufficient skill to reduce streamflow forecast errors in snowmelt-driven
regions. Such predictions can increase the resilience of streamflow forecasting and water management
systems in the face of continuing warming as well as decadal-scale temperature variability and thus help to
mitigate the impacts of climate nonstationarity on streamflow predictability.

1. Introduction

With growing populations and rising temperatures, the pressure on water resources in the southwestern
United States (U.S.) is increasing and expected to continue to do so over the next decades (Reclamation,
2016). Water resources in California, Nevada, Arizona, Utah, Colorado, New Mexico, and Texas are currently
almost entirely allocated for agricultural, industrial, and municipal uses and are heavily managed, with seaso-
nal streamflow forecasts being a key tool used to inform this management. Seasonal streamflow forecasts for
a range of lead times are among the most economically valuable streamflow predictions made in the United
States and around the world, given their significance for water management (Hamlet et al., 2002; Raff
et al., 2013).

Seasonal streamflow forecasts in the Upper Rio Grande river basin, for example, are used to predict the
annual water delivery requirements between Colorado, New Mexico, and Texas under an interstate river allo-
cation agreement, the Rio Grande Compact, to plan for water storage and to inform associated reservoir man-
agement decisions. The forecasts in combination with those decisions enable projections of the water
supplies that will be available to farmers, which in turn can influence cropping decisions. In addition, supple-
mental water supply to the Upper Rio Grande basin is imported each year from the Colorado River system
through transbasin diversions. Forecasts of the water available for diversion are used to estimate the portion
of the imported water that will need to be purchased by the Federal government to support the needs of
endangered species, as well as for planning of drinking water operations in major municipalities. On the
much larger Colorado River system, as well, water supply forecasts issued in spring are essential to make
reservoir storage and release decisions that help avoid shortage conditions in Lake Mead and Lake Powell,
and that determine water and hydropower allocations affecting seven southwestern U.S. states. These deci-
sions influence water and energy costs for major American cities such as Los Angeles, Las Vegas, and Phoenix,
and major irrigation regions such as California’s Imperial Valley and Arizona’s Welton Mohawk Irrigation and
Drainage District.

Although it is difficult to quantify the value of seasonal forecasts or the marginal value of forecast improve-
ments, the value of the water managed using such forecasts rises well into the billions of dollars each year
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(Hamlet et al., 2002; Pierce, 2010). In comparison, the costs of enhancements to operational water supply
forecasting are small, especially when they represent an extension of the current approaches, similar to
the cost-benefit ratio of improved flood forecasting (Pappenberger et al., 2015). In recent decades the
western United States has seen strong hydroclimatic trends and decadal variability, leading to variable
streamflow forecasting skill and a likelihood of suboptimal management decisions (Pagano & Garen, 2005).
To better grapple with water resource management challenges arising from hydroclimate nonstationarity
and increasing water demands, improved efficiency in water management practices is critically needed
(Lins & Cohn, 2011; Milly et al., 2008; Steinschneider & Brown, 2012).

Operational seasonal streamflow forecasts in snowmelt-driven basins commonly derive skill from the stability
of relationships between winter precipitation and snow water equivalent (SWE) with spring to summer melt
season runoff (e.g., April–July streamflow). In some cases, but less commonly, additional predictability is
found in observations of prior streamflow, soil moisture, and in climate indices such as El Niño–Southern
Oscillation (Bell et al., 2017; Harpold et al., 2017; Kalra et al., 2013; Koster et al., 2010; Shukla & Lettenmaier,
2011; Wood et al., 2005). The simplest operational form of seasonal streamflow prediction relies on statistical
models that quantify these relationships, such as principal component regression (PCR) models trained on
observed in situ data records of ~30 years (Garen, 1992). These “water supply forecasts” (WSFs) have tradition-
ally been made beginning in January of the same year with updates on the first day of each month to incor-
porate new precipitation and SWE observations (Pagano, Wood, Ramos, et al., 2014). Operational forecasts
are published by regional River Forecasting Centers and the U.S. Department of Agriculture National
Resources Conservation Service (NRCS). A second common form of seasonal streamflow prediction involves
the use of dynamic watershed models to predict future watershed states and fluxes (Day, 1985; Pagano,
Wood, Werner, et al., 2014).

The skill of statistical WSFs varies with lead time and also on decadal time scales, with basins such as the
Upper Colorado River (UC) and Upper Rio Grande (URG) showing declining skill since the 1980s (Pagano
et al., 2004). While extensive research has been conducted on how to improve seasonal streamflow forecast-
ing systems (Crochemore et al., 2016; Mendoza et al., 2017; Moradkhani et al., 2004; Wood & Lettenmaier,
2006, 2008), the reasons for decadal variations in skill of a fixed forecasting system remain relatively elusive.
Pagano and Garen (2005) argue that these skill variations originate primarily from interannual to decadal
climate variations, rather than basin-specific processes or human interference. As such, successful prediction
of interannual to decadal climate variability has the potential to stabilize streamflow forecasting skill.

Besides decadal climate variability, southwestern U.S. water resources are also sensitive to the influence of
anthropogenically forced climate change, be it via temperature, precipitation, or atmospheric circulation
changes (Barnett et al., 2005; Christensen et al., 2004; Lettenmaier & Gan, 1990; Mote et al., 2005). For semiarid
and snowmelt driven basins such as the UC and URG, numerous studies have indicated that increasing tem-
perature decreases streamflow (Christensen et al., 2004; Griffin & Friedman, 2017; Lehner et al., 2017; Nowak
et al., 2012; Udall & Overpeck, 2017; Vano et al., 2012; Woodhouse et al., 2016). Specifically, runoff efficiency—
a metric indicating the fraction of precipitation that ends up as streamflow—is more likely to be low when
temperatures are above average (Lehner et al., 2017; Nowak et al., 2012). As a consequence, the relationship
between winter moisture accumulation (precipitation and SWE) and summer streamflow is evidently nonsta-
tionary and can be influenced by temperature.

The influence of temperature on runoff efficiency is problematic for WSFs in light of their underlying statio-
narity assumptions with regard to the background climate during the forecast period. Statistical models using
observed accumulated precipitation and SWE at the start of the forecast without additional temperature
information for the forecast period would underpredict streamflow for cool forecast periods and overpredict
streamflow for warm forecast periods, in part because they do not include the information of the secular
warming trend and associated evaporation losses over the entire period.

Here we investigate (1) recent hydroclimate trends and streamflow forecast errors in the study region, the
URG and parts of the UC, (2) the seasonal predictability of temperature over this region, and (3) whether
including predicted temperatures in WSFs improves seasonal streamflow forecasting skill. To that end, we
generate WSFs via the current operational strategy, termed “baseline forecast,” as well as WSFs that include
seasonal temperature forecasts as a predictor, termed “temperature-aided forecast”. The comparison of the
two approaches enables us to assess the potential to improve streamflow forecasting skill by including
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temperature forecasts, as well as the sufficiency of current operational temperature forecasts for this purpose.
Section 2 introduces the data and methods used, section 3 presents the results, and section 4 discusses their
wider implications.

2. Data and Methods
2.1. Streamflow, Precipitation, Snow Water Equivalent, and Temperature Data Sets

Estimates of naturalized monthly streamflow at a number of gages across the UC and URG are obtained from
the NRCS; the gages are marked with circles in Figure 1a and are listed in Table S1 in the supporting informa-
tion. For each gage and year from 1987 to 2016, the total streamflow for the respective forecasting “target
period” (e.g., April–July cumulative flow) is calculated. Observations of water year-to-date cumulative preci-
pitation and instantaneous SWE at 1 January, 1 February, 1 March, 1 April, and 1 May are extracted from
the same snow telemetry monitoring (SNOTEL) stations as used in the operational forecasting by NRCS,
but only if they cover the entire hindcasting period 1987–2016 (triangles in Figure 1a; see also Table S1); this
is to ensure consistency and reproducibility across the hindcasting period. The year 1987 is chosen as a start
year because it offers continuous streamflow and SNOTEL measurements across all gages considered here.
Monthly mean temperature is taken from the Parameter Elevation Regression on Independent Slopes
Model (PRISM) data set (Daly et al., 2008) averaged over the box indicated in Figure 1 (35.5–39.5°N,
108.5–105.0°W). Precipitation used to calculate runoff efficiency in Figure 1b is taken from PRISM as well,
summed up over the watersheds upstream of Rio Grande at Otowi Bridge, San Juan at Bluff, and Gunnison
at Grand Junction.

2.2. Seasonal Temperature Forecasts

Seasonal temperature forecasts are derived from eight initialized coupled climate models that produce
seasonal climate forecasts (Table S2): the North American Multimodel Ensemble (NMME; Kirtman et al.,
2014), which comprises seven models, and the System 4 seasonal forecasting model from the European
Center for Medium-Range Weather Forecast (ECMWF; Molteni et al., 2011). In their current configuration,
these models issue forecasts each month for lead times of up to 12 months with various numbers of ensem-
ble members (10–51). Since we are interested in extracting the seasonally predictable signal, we use each
model’s ensemblemean (rather than all its individual ensemblemembers) of monthly mean 2m temperature
hindcasts issued from January 1987 to May 2016, averaged over the area indicated in Figure 1a. We then use
an equal-weights multimodel mean across the eight models, since we found this method to perform, in terms
of correlation with observed temperature, as well as or better than other weighting schemes in cross-
validation across issue dates and lead times of interest (we tested a performance-weightedmultimodel mean
and an equal-weights mean of the overall three best models CFSv2, NASA, and ECMWF; not shown). For each
streamflow forecast issue month (1 January, 1 February, etc.), temperature is averaged from that issue month
until the end of the main runoff period (July). Alternatives to this choice were tested, such as using spring
(March–May) average temperature or the average over the next or the next 2 months after issue date, but
were found to be inferior (not shown).

2.3. Streamflow Forecasting Procedure

The marginal benefit of including seasonal temperature information in WSFs can be evaluated through
benchmarking the performance of enhanced WSF models against models based on the current operational
forecast practice. We mimic the operational forecasting procedure of the NRCS’s operational WSF by using
SNOTEL data in a principal component regression (PCR) trained on 30 years (1987–2016) of observed natur-
alized streamflow of the respective target period (Garen, 1992), hereafter “baseline forecast”. Before use in
the PCR, streamflow is seminormalized via a square root transformation, as is consistent with NRCS practice.
The number of principal components (PCs) retained is determined through an iterative process as described
in Garen (1992). Specifically, individual PCs are used in a linear regression and the significance of the regres-
sion coefficients is determined via a t test; only PCs are retained that result in significant regression coeffi-
cients and that show a physically plausible relationship with streamflow (i.e., positive coefficients,
indicating that high precipitation and SWE typically leads to high streamflow and vice versa). In our case,
one PC is retained for all streamflow gages, consistent with Harpold et al. (2017), who also duplicated the
NRCS’s WSF. For each forecast issue date, forecasts are cross-validated by training the model on 29 of the
30 years and forecast the remaining (out-of-sample) year, loop through all 30 years to evaluate
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performance. Note that our baseline forecast likely differs slightly from the officially published NRCS forecast
over the past decades, since those may also include additional but noncontinuous snow course information
and/or newer SNOTEL data. As discussed above, for consistency across watersheds, we only use data sets of
consistent record length (1987–2016).

We then reforecast the same time period using the same information but add the ensemble mean tempera-
ture anomaly of the eight seasonal forecasting models as an additional predictor to the PCR (hereafter
“temperature-aided forecast”). For a given year and forecast issue date (e.g., 1 January, 1987), the mean
temperature prediction from the forecast issue date to the end of July is averaged over the box indicated in
Figure 1a. For all gages, the regression coefficients derived from the PCR are such that precipitation and SWE
always exhibit a positive relationship with streamflow, and temperature always a negative one, indicating a
physically plausible interaction of precipitation, SWE, and temperature in describing streamflow. The same
rules for PC retention are applied and one PC was retained in all cases.

2.4. Skill Metrics

Prediction skill for the baseline and temperature-aided streamflow forecast is calculated via a leave-one-out
cross validation from 1987 to 2016. Each year between 1987 and 2016 is hindcasted with a principal compo-
nent regression model that has been calibrated on the remaining 29 years of data, and the resulting time
series of 30 streamflow predictions are verified against the corresponding observations.

We quantify forecast skill using the following metrics: (i) correlation, (ii) relative root-mean-square error
(rRMSE, in %), (iii) the Brier Skill Score (BSS) for streamflow <33rd percentile, and (iv) Continuous Ranked
Probability Skill Score (CRPSS; Hersbach, 2000). Correlation and rRMSE describe how well the model predicts
the variability and the absolute values, respectively, of the observed time series. The third metric provides
insight into the ability of the model to predict dry conditions relevant to droughts in the U.S. Southwest,

Figure 1. (a) Map showing the main rivers, basins, (circles) streamflow gages, and (triangles) SNOTEL stations analyzed in this study. (b) Runoff efficiency—spring-
summer streamflow divided by water year precipitation—as a function of spring-summer temperature for three selected gages marked with colored boxes in
Figure 1a. (c) Snow-rain partitioning—peak snow water equivalent (SWE) divided by water year precipitation—for all SNOTEL stations analyzed in this study (each
linear trend line is for one SNOTEL station) as a function of winter-spring temperature. (d) Observed and forecasted streamflow for the three selected gages;
solid lines are the observed streamflow, while colored shading indicates the difference between the observed and forecasted streamflow, that is, the larger the
shading the larger the forecast error; gray shading indicates time period analyzed in this study. See text for more details on data sets.
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and the fourth metric, which measures the ability of the forecast model to correctly predict the cumulative
distribution function of the observed streamflow data, is used to quantify probabilistic prediction skill.

Since the skill metrics BSS and CRPSS rely on probabilistic forecasts, we derive exceedance probabilities from
the standard error of the forecasts, consistent with NRCS’ approach (Garen, 1992). Both BSS and CRPSS are
typically expressed as skill relative to a certain reference forecast (typically persistence or climatology).
Here we express them relative to the baseline forecast to emphasize the improvement relative to the current
operational approach.

3. Results
3.1. Hydroclimate Trends and Streamflow Forecast Errors

Recent hydroclimate trends in the UC and URG headwaters are illustrated by plotting the runoff efficiency as
a function of temperature anomalies for streamflow gages at the outflow of the headwaters of the Gunnison,
San Juan, and Rio Grande (Figure 1b; these three gages are representative of the dynamics at other gages, see
Figure S1). A clear temperature sensitivity exists, leading to relatively reduced streamflow under positive tem-
perature anomalies. Even in the absence of a strong precipitation trend, higher temperatures are shifting the
partitioning of precipitation from snow to rain, a phenomenon that is detectable at virtually all SNOTEL
stations in the region (Figure 1c), thereby changing the peaks and timing of both snowmelt and runoff.
Higher temperatures also allow for more evaporative loss between when the snow falls and when the water
arrives at the streamflow gages downstream, which is a key hydrologic dynamic leading to forecast errors.

Relatively persistent forecast errors are confirmed by the forecast record in the UC and URG: streamflow gage
records in these two basins show a tendency to be underpredicted in the 1980s and 1990s and overpredicted
in the 2000s and 2010s (Figures 1d and S1). While these forecast errors are in part related to unusually wet
springs and summers in the 1980–1990s and unusually dry springs and summers in the 2000–2010s, there
exists evidence that streamflow in recent years was lower than expected from precipitation deficits alone
(Lehner et al., 2017; Woodhouse et al., 2016), pointing to a simultaneous influence of temperature on stream-
flow and thus on forecast error. This theory is further corroborated by a significant correlation of streamflow
forecast error with both anomalous precipitation and temperature after the forecast issue date (Figure S2).
This relationship holds even when the natural correlation between precipitation and temperature is
accounted for, a result consistent with earlier studies (Harding et al., 2012).

3.2. Temperature Forecast Skill

While uncertainty in multidecadal projections of precipitation in the U.S. Southwest remains high, climate
models such as those included in the fifth phase of the Coupled Model Intercomparison Project (CMIP5)
project future temperature increases (Figure 2a) with far more certainty (van Oldenborgh et al., 2013).
Similarly, dynamical seasonal climate prediction models, such as the eight models from the NMME and

Figure 2. (a) March–July mean temperature anomalies relative to 1982–2016 from observations, 40 CMIP5 models, and seasonal prediction models
(NMME + ECMWF), averaged over the box indicated in Figure 1a. The red line is the mean across NMME-ECMWF models, the gray line is the mean across CMIP5
models, and the black line is observations. Shading indicates the 5–95% range. (b) Correlation between observed and forecasted temperature for different
temperature targets and seasonal prediction models for 1982–2016. Forecasts are initialized at the start of each predicted period. All correlations are significant at
95% confidence.
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ECMWF are more skillful in predicting temperature than precipitation (Becker et al., 2014; Slater et al., 2016).
The ensemble mean across these eight seasonal forecasting models captures the observed warming trend
of recent decades as well as part of the interannual variability of spring-to-summer temperature over the
UC and URG headwaters region at lead times of up to 5 months, showing significant correlations ranging
between 0.65 and 0.75 (Figures 2a and 2b). The combination of these two results leads to a usable tempera-
ture forecast skill in the context of streamflow prediction in this region. The ECMWF model is the best
performing individual model overall, although not necessarily for every lead times and not necessarily when
compared to the multi-model mean across all eight models.

3.3. Improved Streamflow Forecast Skill

We find that augmenting the baseline forecasting approach through the use of temperature predictors adds
prediction skill across the majority of streamflow gages and issue dates in the study region, which is repre-
sentative of snowmelt-influenced watersheds in many parts of the western United States. These benefits
are illustrated through the skill difference between the baseline and temperature-aided forecasts for all skill
metrics considered (Figure 3). Themedian relative improvement across gages and skill metrics is between 1%
and 10% with some spread across gages. The vast majority of these improvements are statistically significant
in light of sampling uncertainty (see section 3.4). Probabilistic skill is improved to a similar extent for drought
conditions (BSS) as it is for the entire distribution of streamflow values (CRPSS). All four skill metrics indicate
larger improvements for later issue dates, which likely results from a combination of better temperature
forecast skill at shorter lead times and the potential for stronger temperature anomaly signals due to a shorter
averaging period (e.g., May–July versus January–July).

When considering the median skill across gages within each basin, improvements tend to be largest in the
Rio Grande. The variations of forecast improvements across gages reflects the different temperature sensitiv-
ity of catchment hydrology in different locations. The sensitivity of spring runoff to temperature is affected by
factors such as the basin distribution of elevation and aspect, vegetation, and land cover (Male & Gray, 1981),
making it difficult to disentangle the reasons for an individual forecast’s improvement using a statistical
model only. No relationship between magnitude of skill improvement and basin elevation is found
(not shown).

We also calculate the theoretical skill improvement resulting from using the actually observed temperature
and found it overall to be only marginally higher than with the temperature-aided forecast based on pre-
dicted temperature (Figures 3b and 3c). This indicates that the majority of the temperature information that
adds skill to WSF can indeed be extracted from seasonal prediction models. Since temperature in this region
over the period 1987–2016 shows a strong positive trend, the question arises, How much of the added skill is
attributable to the trend alone? Using the observed linear temperature trend from 1987 to 2016 as a predictor
in the WSF model (thereby excluding any interannual variability that might be predictable by seasonal
prediction models), we show that the trend alone adds skill, but never more than about 60% of the skill
improvement achieved through using the temperature predicted by the seasonal prediction models
(Figures 3b and 3c). This confirms both the important role of the increasing temperature and the additional
added value of predictable interannual temperature variability for WSFs.

Finally, we repeat the forecasting using the temperature forecasts from the ECMWFmodel only, since it is the
best performing individual model (Figure 2b), and from the seven NMME models only (i.e., without ECMWF).
Interestingly, we found the streamflow forecasting skill to be roughly equal in all three cases (Figure S3). This
suggests that temperature forecasts from ECMWF model contain about as much information, with regard to
streamflow forecasting, as the seven NMME models combined.

3.4. Robustness of Forecast Skill Improvements

The skill is improved for the majority of the total of 100 possible forecasts (20 gages × 5 issue dates). In terms
of correlation, 97 forecasts are improved, 100% of those significantly; in terms of rRMSE, 95 are improved,
99% of those significantly; in terms of BSS, 87 are improved, 99% of those significantly; in terms of CRPSS,
94 are improved, 95% of those significantly (see also Table S3). Significance is established through a Monte
Carlo approach in which all forecasts and the associated skill score calculations are repeated 1,000 times
on 30 year samples constructed from bootstrapping the original 30 years with replacement. If the 95th
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percentile of this distribution of skill scores shows an improvement, the skill improvement is considered
significant at the 95% confidence level.

4. Discussion and Conclusions

The skill improvement demonstrated here for seasonal streamflow forecasts in the Upper Rio Grande and
Upper Colorado River basins can be of significant value to State and Federal water managers, which, in turn,
can benefit water users throughout these basins (C. Donnelly and C. Cotton, personal communication, 2017).
Despite its limited spatial extent, the study here is of relevance for other snowmelt-driven basins across the

Figure 3. (a) Absolute skill improvement of the temperature-aided forecast relative to the baseline forecast at individual gages for issue date 1March as an illustrative
example. (b) Absolute skill improvement for all gages as a function of issue date. (c) Relative skill improvement for all gages as a function of issue date. Solid
lines are the median across (black) all gages and (colors) the three basins. Dashed line is the median across all gages when using observed temperature, mimicking
the hypothetical case where the future temperature is known at the time of forecast issue, and dotted line is the median when using only the linear trend of
observed temperature.
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United States and the world, since streamflow forecast skill in such basins is often driven by the same
temperature-sensitive processes.

We show that current seasonal climate prediction models are skillful in forecasting both the long-term trends
and interannual variability of seasonal temperatures for this region. This temperature information adds skill to
existing “water supply forecasts” (WSFs), mitigating some of the forecast errors introduced through climate
nonstationarity, andmoving the WSFs closer to their maximally expected forecast skill based on relationships
between observed snow, precipitation, and temperature. Additional predictability might be available once
seasonal precipitation forecasts become more skillful.

For the statistical WSFs shown here, the proposed extension involves accessing and incorporating tempera-
ture predictions into existing statistical forecasting models. Conventional forecasting approaches based on
hydrologic models (such as Ensemble Streamflow Prediction, or ESP, a popular operational method that is
not discussed in this paper) are also commonly dependent on climate stationarity assumptions and thus are
also likely to benefit from additional temperature forecast information. Fortunately, many techniques for inclu-
sion of conditional climate information have been described in the literature over the last several decades for
both statistical andmodel-based forecasting (e.g., Beckers et al., 2016; Mendoza et al., 2017; Werner et al., 2004;
see also the special issue of Wetterhall et al., 2017), including examples of using NMME and ECMWF
(Crochemore et al., 2016; Mo & Lettenmaier, 2014; Thober et al., 2015; Yuan et al., 2013). It may be impossible
to protect or increase streamflow prediction skill in all locations in the face of a nonstationary climate, but
expanding the use of model-based seasonal climate predictions, and particularly temperature forecasts,
appears to be one pragmatic strategy for hydroclimates that are similar to the U.S. Southwest.

Despite the evidence of forecast skill improvement through inclusion of temperature, this study does not
support detailed conclusions regarding the hydrologic processes that underpin changes in prediction skill,
as the temperature influence on streamflow can be dampened or amplified due to other effects and non-
linear interactions (e.g., related to groundwater use or vegetation alterations). Our focus on minimally
impaired gages in headwater locations aims to circumvent this issue, but we cannot exclude all possibilities
of processes amplifying or canceling each other. Similarly, using low-dimensional statistical models only, we
are unable to disentangle why certain gages show greater improvement than others. Process-based observa-
tion and modeling studies tackling this question may therefore be a valuable next step for the hydrologic
forecasting community.
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